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1 Monoid Theory

1.1 Group Submonoids

Definition 1.1. A group subomonoid is a subset M of a free abelian group (G,+) such that:

i. ∀m1,m2 ∈M , m1 +m2 ∈M (Closure)

ii. 0G ∈M (Identity)

iii. ∀m1,m2 ∈M , m1 +m2 = 0G ⇒ m1 = m2 = 0G (Zerosumfree)

To check the definition makes sense we have:

Proposition 1.1. A group submonoid M of a free abelian group (G,+) is a commutative
monoid (M,+).

Proof. M has closure and identity by definition and inherits associativity and commutativity
from (G,+).

The group submonoid also inherits some of the free structure of G. In the sense that a free
abelian group is a module over the ring Z, we have that a group submonoid is a semimodule
over the semiring N. Henceforth we refer to group submonoids as simply monoids.

Definition 1.2. The set of composite elements of a monoid M is:

C(M) := {m ∈M : (∃α, β ∈ N,∃x, y ∈M \ {m} : m = αx+ βy)}

The basis of a monoid M is:
B(M) := M \ C(M)

The span S(X) of a subset X of a monoid M is:

S(X) :=

{
n∑

i=1

αimi : αi, n ∈ N,mi ∈ X

}

Lemma 1.2. Suppose M,N are monoids. Then

B(M ×N) = ((B(M) ∪ {0M})× (B(N) ∪ {0N})) \ {0M×N}

Proof. Suppose (x, y) ∈ B(M ×N) then (x, y) 6= (0M , 0N ) and there are no (m1, n1), (m2, n2) ∈
M × N and α, β ∈ N such that (x, y) = α(m1, n1) + β(m2, n2). Now suppose that (x, y) /∈
((B(M)∪{0M})× (B(N)∪{0N})) \ {0M×N}. Since (x, y) 6= 0M×N , x /∈ B(M)∪{0M} and y /∈
B(N)∪ {0N}. Hence ∃αx, αy, βx, βy ∈ N,m1,m2 ∈M,n1, n2 ∈ N such that: x = αxm1 + βxm2

and y = αyn1 + βyn2. Combining these equations gives:

(x, y) = (αxm1 + βxm2, αyn1 + βyn2)

= (αxm1, αyn1) + (βxm2, βyn2)

Since (αxm1, αyn1), (βxm2, βyn2) ∈ M × N , we have a contradiction and so x ∈ ((B(M) ∪
{0M})× (B(N) ∪ {0N})) \ {0M×N}. Hence B(M ×N) ⊆ ((B(M) ∪ {0M})× (B(N) ∪ {0N})) \
{0M×N}.

Now suppose x ∈ ((B(M) ∪ {0M})× (B(N) ∪ {0N})) \ {0M×N}. Then

Theorem 1.3. B(M) is the smallest subset of M such that S(B(M)) = M .
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Proof. We first show that S(B(M)) = M . Clearly S(B(M)) ⊆ M . Now suppose m ∈ M .
If m ∈ B(M) then m ∈ S(B(M)). So suppose that m /∈ B(M). Therefore m ∈ C(M) and
thus ∃α, β ∈ N, ∃x, y ∈ M : m = αx + βy. If such x, y ∈ B(M) then m ∈ S(B(M)) and
we are finished. If not, we can break down the x or y and repeat the process until we find a
contruction of m using a linear combination of elements from B(M). Therefore m ∈ S(B(M))
and so M ⊆ S(B(M)).

Now suppose that there was a set smaller than B(M) with this property and call it X.
Choose x ∈ B(M) \X. Since M = S(X) there is a linear combination of elements of X equal
to x. But since x ∈ B(M) this is a contradiction. So B(M) is the smallest set.

Definition 1.3. The rank of a monoid M is given by |B(M)|.

2 Introduction to Polytopes

2.1 Convex Hulls

Definition 2.1. Given x1, . . .xn ∈ Rn, define a convex linear combination of x1, . . .xn as:

α1x1 + . . .+ αnxn

with αi ∈ R≥0 such that
∑n

i=1 αi = 1.

Definition 2.2. The finite convex hull of a set of points x1, . . .xn ∈ Rn is the set of all convex
combinations of the points. i.e.

conv∗(x1, . . .xn) :=

{
n∑

i=1

αixi : αi ∈ R≥0,
n∑

i=1

αi = 1

}

Definition 2.3. A hyperplane H(h, α) ⊆ Rn is a set of the form:

H(h, α) := {x ∈ Rn : x.h = α}

We say that H(h, α) supports a subset A ∈ Rn if ∀x ∈ A, either x.h ≥ α or x.h ≤ α.

Definition 2.4. A convex polytope P ∈ P(Rn) is a convex hull such that for every hyperplane
H ⊆ Rn, P * H.

We call the set of convex polytopes Rn the well and denote it Wn ⊆ P(Rn).

Definition 2.5. Suppose P ⊆ Rn. A point p ∈ P is an extreme point of P if ∀X ⊆ P such
that |X| <∞, p /∈ conv∗(X) and we denote the set of extreme points of ext(P ).

Theorem 2.1. ext(X) is the smallest subset of X ⊆ Rn such that conv∗(ext(X)) = conv∗(X).

Definition 2.6. Given a subset X ⊆ Rn, we define the convex hull of X as conv(X) =
conv∗(ext(X)).

2.2 Faces

Definition 2.7. A subset F of a set P ⊆ Rn is called a face of P if there exists a supporting
hyperplane H ⊆ Rn such that F = H ∩ P , F = P or F = ∅.

Definition 2.8. The convex face function F∗ : P(Rn)→ P(P(Rn)) is defined as:

F∗(P ) := {F ⊆ P : F is a face of P}
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Face here is used as a general term. For example for P ∈ W3, F∗(P ) includes all of the
vertices, edges and faces of P . For non-convex objects, F∗ fails to capture those subsets that
are “concave” and so we require a more general notion of a face.

Definition 2.9. The closure-boundary operator N : P(Rn)→ P(Rn) is defined as:

N (P ) := P \ P

Definition 2.10. The face function F∗ : P(Rn)→ P(P(Rn)) is defined as:

F(P ) := F∗(P ) ∪ F∗(N (conv(P ) \ P ))

Proposition 2.2. Suppose P ∈Wn. Then F(P ) = F∗(P ).

For X ⊆ Rn, X denotes the closure of X.

Proof. Suppose P ∈Wn. Then:

F(P ) = F∗(P ) ∪ F∗(N (conv(P ) \ P ))

= F∗(P ) ∪ F∗
(

(conv(P ) \ P ) \ (conv(P ) \ P )
)

= F∗(P ) ∪ F∗
(

(P \ P ) \ (P \ P )
)

= F∗(P ) ∪ F∗ (∅ \∅)

= F∗(P ) ∪ F∗ (∅ \∅)

= F∗(P ) ∪ F∗ (∅)

= F∗(P ) ∪∅
= F∗(P )

Observe that the collection F(P ) is partially ordered by inclusion and, in the case of convex
polytopes, a lattice. We can use this partial ordering to define the dimension of elements of the
collection.

Definition 2.11. Suppose P is a polytope and F ∈ F(P ). We define the dimension of F ,
dimF , as the number of subset inclusions F has in F(P ).

Again, for example: any planar face has dimension 2 since it has two inclusions: edges and
vertices contained in those edges. Similary a polyhedron has dimension 3. Notice that we can
partition F(P ) by the dimension of its elements.

Definition 2.12. We define the dth face subcollection of a polytope P as:

Fd(P ) := {F ∈ F(P ) : dimF = d}

Proposition 2.3. The face subcollections of a polytope P partition F(P ).

Proof. Suppose F ∈ Fd(P ) then dimF = d and so ∀n ∈ N \ {d}, F /∈ Fn(P ). Hence the
subcollections are disjoint. Clearly every face has a dimension and so every face must be
contained in Fd(P ) for some d ∈ N. Hence F(P ) =

⋃n
i=0Fi(P ).
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2.3 Polytopic Equivalence

Now that we are equipped with a sufficient notion of what convex polytopes are, we can attempt
to remove some geometric structure and focus on the combinatorial properties.

Definition 2.13. Suppose P,Q ∈ Wn. We say P and Q are combinatorially equivalent or
c-equivalent and write P ∼= Q if there is a bijection φ : F(P )→ F(Q) such that ∀F,G ∈ F(P ),
F ⊆ G⇔ φ(F ) ⊆ φ(G).

Equivalently, P ∼= Q if and only if F(P ) ∼= F(Q). That is, F(P ) and F(Q) are isomorphic
as partially ordered sets.

Proposition 2.4. C-equivalence is an equivalence relation.

Proof. Clearly P ∼= P via the identity map. Suppose P ∼= Q with isomorphsim φ. Then
φ−1 : F(Q) → F(P ) is a bijection and ∀φ(F ), φ(G) ∈ F(Q), φ(F )) ⊆ φ(G) ⇔ F ⊆ G ⇔
φ−1(φ(F )) ⊆ φ−1(φ(G)). Hence Q ∼= P . Similary if Q ∼= P then P ∼= Q. Finally suppose
P,Q,R ∈Wn and P ∼= Q, Q ∼= R with isomorphisms φ, ψ respectively. ψ ◦ φ is a bijection and
∀F,G ∈ F(P ), F ⊆ G⇔ φ(F ) ⊆ φ(G)⇔ ψ(φ(F )) ⊆ ψ(φ(G)). Hence P ∼= R.

This is the natural notion of combinatorial equivalence as it preseves only the inherent
structure of the shape and not how it is stretched or skewed or how regular it is etc. However it
is slightly too strict an equivalence for what we require as is illustrated in the follwing example.

Proposition 2.5. The dodecahedron is not c-equivalent to the decagonal prism.

Proof. Choose any 2-face of the dodecahedron and call it F2. F2 must either map to a decagonal
face of the prism or a rectangular one. Suppose it maps to the latter. Then each edge subset
of F2 must map to an edge of the rectangular face. This is impossible since we are mapping
4 edges to 5. Hence F2 must map to the decagonal face. This can be done for at most two
2-faces of the dodecahedron and since we have 12 to map, one must map to a rectangular face.
Therefore, any bijection we choose cannot be inclusion preserving. Thus, the two shaped are
not c-equivalent.

This example illustrates the defficiency in c-equivalence. Both shapes have the same number
of vertices, edges and faces1 but are not equivalent. Hence we wish to define an equivalence
that preserves the number of each type of face rather than inclusion.

Definition 2.14. Suppose P,Q ∈Wn. We say P and Q are B-equivalent and write P ∼B Q if
there is a bijection φ : F(P )→ F(Q) such that ∀d ∈ N, |Fd(P )| = |φ(Fd(P ))|.

Proposition 2.6. B-equivalence is an equivalence relation.

Proof. Clearly P ∼B P via the identity map. Suppose P ∼B Q with isomorphsim φ. Then
φ−1 : F(Q) → F(P ) is a bijection and ∀d ∈ N, |φ(Fd(P ))| = |Fd(P )| = |φ−1(φ(Fd(P )))|.
Hence Q ∼B P . Similary if Q ∼B P then P ∼B Q. Finally suppose P,Q,R ∈ Wn and
P ∼B Q, Q ∼B R with isomorphisms φ, ψ respectively. ψ ◦ φ is a bijection and ∀d ∈ N,
|Fd(P )| = |φ(Fd(P ))| = |ψ(φ(Fd(P )))| Hence P ∼B R.

Cleary this definition sets any two polytopes with the same number of d-faces2 as equivalent,
removing the issue displayed in proposition 2.5. The two notions of equivalence are related in
the following way.

Proposition 2.7. Suppose P,Q ∈Wn. Then P ∼= Q⇒ P ∼B Q.

120, 30, 12.
2Face of dimension d.
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Proof. Suppose P ∼= Q and φ : F(P ) → F(Q) is the inclusion preserving one-to-one map.
Since the dimension of a face depends only on set inclusion, we have that ∀F ∈ F(P ), dimF =
dimφ(F ) and so F ∈ Fd(P )⇔ φ(F ) ∈ φ(Fd(P )). Hence ∀d ∈ N, |Fd(P )| = |φ(Fd(P ))|.

Note that propostion 2.5 shows that P ∼B Q ; P ∼= Q and thus we know that P ∼= Q <
P ∼B Q.

2.3.1 Spherical Polytopes

We now extend the convex polytopes to include all polytopes that are combinatorially equivalent
to convex polytopes.

Definition 2.15. The set of spherical polytopes is defined as:

Yn
0 := {P ⊆ Rn : ∃Q ∈Wn such that P ∼= Q}

We further remove geometric stucture from Yn
0 by quotienting the set by B-equivalence and

treating spherical polytopes as elements of the set:

Yn
0/ ∼B := {[P ]∼B : P ∈ Yn

0}

2.4 The Natural Numbers

We now switch our representation of spherical polytopes to elements of Nn.

Definition 2.16. Define the map E : Yn
0/ ∼B → Nn as:

E([P ]∼B ) :=

 |F0(P )|
...

|Fn−1(P )|


We first show that E is well-defined and injective

Proposition 2.8. Suppose P,Q ∈ Fn
0 . Then P ∼B Q if and only if E([P ]) = E([Q]).

Proof. Suppose P,Q ∈ Fn
0 such that P ∼B Q. Hence ∀d ∈ N, |Fd(P )| = |φ(Fd(P ))| = |Fd(Q)|.

Therefore E([P ]∼B ) = E([Q]∼B ). Now suppose that E([P ]∼B ) = E([Q]∼B ). Then ∀d ∈ N,
|Fd(P )| = |φ(Fd(P ))| = |Fd(Q)| and hence P ∼B Q. Thus, [P ]∼B = [Q]∼B and so E is
injective.

We denote the set of tupels representing spherical polytopes by Fn
0 := E(Yn

0/ ∼B) so that
E is a bijection between Yn

0/ ∼B and Fn
0 .

3 Structure of Fn0
3.1 Simplices

Definition 3.1. The n-dimensional simplex an ∈ Fn
0 is given by:

an :=


(
n+1
1

)
...(

n+1
n

)


Additionally we allow lower dimensional simplices am ∈ Nn withm < n to interact with elements
of Fn

0 by defining:

am :=


(
m+1
1

)
...(

m+1
n

)

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Example 3.1. Some familiar examples in F3:

i. Triangle a2 :=

3
3
1



ii. Tetrahedron a3 :=

4
6
4


3.1.1 Matrix Functions

Before we move onto the next section, we require the following very simple notion allowing
functions to act on tupels.

Definition 3.2. Suppose X ⊆ R. Given a function f : {0, . . . , n} → X, we define the matrix
function G of f as:

G(f) :=


f(0) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 f(n)


3.2 Polytopic Simplical Constructions

Consider ‘gluing’ a simpliex to another of the same dimension via a common facet. Observe
that the resultant shape is indeed a polytope with simplicial facets. To construct this face we
would identify the lower dimensional faces appropriatley via an order homomorphism and then
remove the facets that were identified together since they are now on the ‘inside’ of the polytope.
Using this construction we further oberve that the tupel of this new shape is formed as follows:

z = an + (an − an−1 − en)

where en is the nth standard basis vector of Rn. We can continue this process for as long as we
like, say for t ∈ N iterations, each time gluing a new simplex to the polytope. Hence we have
constructed a family of polytopes in Fn

0 of the form:

z = an + t(an − an−1 − en)

A natural next question to ask is whether a shape like a cube is a memer of this family. Clearly
the cube in Yn

0 itself is not but there may be a member of this family B-equivalent to it.

Proposition 3.1. @t ∈ N such that: 8
12
6

 =

4
6
4

+ t

4
6
4

−
3

3
1

−
0

0
1


Proof. We simplify the equation to get: 8

12
6

 =

4
6
4

+ t

1
3
2


from which we deduce that t = 4 ∧ t = 2 ∧ t = 1. Hence there is no single t ∈ N generating the
cube.
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As trivial as this proposition is, it highlights an interesting pattern. If we replace the constant
t with a function f : {0, 1, 2} → Q≥0 defined by f(0) = 4, f(1) = 2, f(2) = 1 we can generate
the cube from this construction. Admittedly, we have lost the ability to visualise what is going
on in this construction but there is something very ‘cube-like’ about the above function.

Evidently every element of Nn can be written in the form:

z = an +G(f)(an − an−1 − en)

for some function f : N→ Q≥0 and hence every element of Fn
0 can be written in the form:

z = an +G(f)(an − an−1 − en)

for some function f : N → Q≥0. The exact restrictions on what functions can be chosen is
an equivalent problem to the classification of the tupels of convex polytopes. We will address
this problem for F3 and below using Steinitz’s theorem later. For now we move onto the most
important conjecture that will be presented here. It concerns the one of the ultimite goals of
this study. That is, to define a notion of combination or ‘addition’ of polytopes.

3.3 Polytopic Addition

Definition 3.3. Suppose z ∈ Fn
0 . Then we define the shape function of z, gz : {0, . . . , n} → Q≥0

as the solution to the equation:

z = an +G(gz)(an − an−1 − en)

Conjecture 3.2. Suppose p, q ∈ Fn
0 . Then ∃r ∈ Fn

0 such that:

r = an + (G(gp) +G(gq))(an − an−1 − en)

Assuming this conjecture holds, we can then define a notion of addition in Fn
0 .

Definition 3.4. We define addition between elements p, q ∈ Fn
0 as:

p+c q := an + (G(gp) +G(gq))(an − an−1 − en)

Proposition 3.3. ∀p, q ∈ Fn
0 ,

p+c q = p+ q − an
Proof.

p+c q = an + (G(gp) +G(gq))(an − an−1 − en)

= an +G(gp)(an − an−1 − en) +G(gq)(an − an−1 − en)

= an +G(gp)(an − an−1 − en) + an +G(gq)(an − an−1 − en)− an
= p+ q − an

Proposition 3.4. ∀n ∈ N \ {0},

an − an−1 − en =


(
n
0

)
...(
n

n−2
)(

n
n−1
)
− 1


Proof. Simple after application of the Pascal’s triangle lemma for binomial coefficients.

Proposition 3.5. ∀z ∈ Fn
0 ,

gz(t) =


z.et+1

(nt)
− n+1

t+1 0 ≤ t < n− 1

z.en
n−1 −

n+1
n−1 t = n− 1

Proof. Follows from proposition 3.4.
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4 Low Dimensional Polytopes

4.1 Dimensions 0, 1 and 2

Observe that in Y0
0, there is only one polytope - the single point. Hence we conclude that

F0
0 = {a0}. Now suppose we take the convex hull of a collection of points in R. The result is

either a member of F0
0 or is a line segment with two end point vertices. Hence F0/ ∼B contains

only one equivalence class. Therefore: F0 = {2}. The equivalence classes of the polytopes of F2
0

are given by the number of vertices of the polytope since each polytope has number of vertices
and edges equal. However when there are less than three vertices, the polytopes are points and
line segments not in Y2

0. Hence we have that:

F2
0 =

{(
n
n

)
: (n ∈ N : n ≥ 3)

}
Proposition 4.1. (F0

0,+c) is a commutative monoid.

Proof. We make use of proposition 3.3. a0 +c a0 = a0 + a0 − a0 = a0. Hence a0 is the idensity
element and F0

0 is closed under the C-addition. C-addition is also commutative and associative
on Nn by proposition 3.3.

Proposition 4.2. (F0,+c) is a commutative monoid.

Proof. The proof is identical to the case for dimension 0 as F0 = {a1}.

Proposition 4.3. (F2
0,+c) is a commutative monoid.

Proof. We just have to show identity and closure. Observe that an is always the identity element
of C-addition. Now suppose that: (

n
n

)
,

(
m
m

)
∈ F2

0

Then since n,m ≥ 3,(
n
n

)
+c

(
m
m

)
=

(
n
n

)
+

(
m
m

)
−
(

3
3

)
=

(
n+m− 3
n+m− 3

)
∈ F2

0

4.2 Dimension 3

We now make concrete some of the simplicial contruction theory from the previois section for
dimensions three.

Definition 4.1. The second Euler charectaristic χ2 : Fn
0 → Z is defined as:

χ2(z) := −1 +

n−1∑
i=0

(−1)iz.ei+1 + (−1)n

Observe that the second Euler characteristic is related to the Euler characteristic in the
following way: χ2(z) = −1 + χ(z) + (−1)n.

Theorem 4.4. (Steinitz’s Theorem) Suppose z ∈ Nn. Then if:

i. 4 ≤ z.e3+4
2 ≤ z.e1 ≤ 2z.e3 − 4

ii. χ2(z) = 0

8



gz(t) =


z.e1 − 4 t = 0
z.e2
3 − 2 t = 1

z.e3
2 − 2 t = 2

Corollary. (Steinitz’s Theorem II) Suppose z ∈ Nn. Then if:

i. 0 ≤ gz(2) ≤ gz(0) ≤ 4gz(2)

ii. χ2(z) = 0

5 Other

Definition 5.1. A function g : {0, 1, 2} → Q≥0 is Grünbaum if:

i. g(0) ≤ 2g(1) ≤ 4g(2) ≤ 4g(0)

ii. g(0)− 3g(1) + 2g(2) = 0

We denote the set of Grünbaum functions on {0, 1, 2} by G3.

Proposition 5.1. G3 is closed under additon.

Proof. Suppose g1, g2 ∈ G3. Observe that g1 + g2 satisfies i. It remains to check ii. Consider:

(g1 + g2)(0)− 3(g1 + g2)(1) + 2(g1 + g2)(2) = g1(0) + g2(0)− 3(g1(1) + g2(1)) + 2(g1(2) + g2(2))

= g1(0) + g2(0)− 3g1(1)− 3g2(1) + 2g1(2) + 2g2(2)

= g1(0)− 3g1(1) + 2g1(2) + g2(0)− 3g2(1) + 2g2(2)

= 0

Hence g1 + g2 ∈ G3.

Definition 5.2. The Grünbaum matrix G ∈ Q3×3
≥0 of a function g ∈ G3 is:

G :=

g(0) 0 0
0 g(1) 0
0 0 g(2)


Proposition 5.2. The sum of two Grünbaum matrices is a Grünbaum matrix.

Proof. Follows from proposition 5.1.

Definition 5.3. The tetrahedral construction matrix is:

A3 :=

0 0 1
1 0 0
0 1 −1


Definition 5.4. The set of genus 0 polyhedra is:

F3 := {z3 ∈ N4 : z3 = a3 +GzA3a2}

Where Gz is the Grünbaum matrix corresponding to z.

Example 5.1. For lower dimensions we have:

i. F0 = {a0}
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ii. F1 = {a1}

Definition 5.5. We define addition between elements x, y ∈ F3 as:

x+c y := aM + (Gx +Gy)A3a2

Proposition 5.3. llx, y ∈ F3,
x+c y = x+ y − a3

Proof.

x+ y − a3 = aM +GxA3a2 + a3 +GyA3a2 − a3
= a3 +GxA3a2 +GyA3a2

= aM + (Gx +Gy)A3a2

= x+c y

Proposition 5.4. (F3,+c) is a monoid.

Proof. a3 is the identity element and F3 is closed under addition by propositions 5.2 and 3.3.

Theorem 5.5. (Euler’s Formula for Polyhedra) ∀z ∈ F3, (1,−1, 1,−1)z = 1.

Proof.

(1,−1, 1,−1)z = (1,−1, 1,−1)(a3 +GzA3a2)

= (1,−1, 1,−1)




4
6
4
1

+

gz(0) 0 0
0 gz(1) 0
0 0 gz(2)

0 0 1
1 0 0
0 1 −1

3
3
1




= (1,−1, 1,−1)




4
6
4
1

+

 0 0 gz(0)
gz(1) 0 0

0 gz(2) −gz(2)

3
3
1




= (1,−1, 1,−1)




4
6
4
1

+

 gz(0)
3gz(1)
2gz(2)




= (1,−1, 1,−1)


4 + gz(0)
6 + 3gz(1)
4 + 2gz(2)

1


= 4 + gz(0)− 6− 3gz(1) + 4 + 2gz(2)− 1

= 1 + gz(0)− 3gz(1) + 2gz(2)

= 1

5.1 Polytopic Simplicial Constructions

We can generalise the definition of F3 fairly easily by changing 3 to M ∈ N in the definitions
and expanding the two matrices accordingly. The difficulty in the generalisation arises from
GM , that is the set of all Grünbaum functions on {0, 1, . . .M − 1}. We require a definition of
Grünbaum functions on sets with cardinality greater than 3.
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5.2 Minkowski Addition

We move now to define addition between polytopes in order to give Yn some kind of algebraic
structure.

Definition 5.6. Suppose P,Q ∈ Yn then we define:

P +Q := {p + q : p ∈ P,q ∈ Q}

Lemma 5.6. Suppose A,B ⊆ Rn then conv(A+B) = conv(A) + conv(B).

Proof.

conv(A+B) = conv({a + b : a ∈ A,b ∈ B})
= conv(a1 + b1, . . . ,an + bn) ai ∈ A,bi ∈ B

=

{
n∑

i=1

αi(ai + bi) : αi ∈ R≥0,
n∑

i=1

αi = 1

}

=

{
n∑

i=1

αiai +
n∑

i=1

αibi : αi ∈ R≥0,
n∑

i=1

αi = 1

}

⊆

{
n∑

i=1

αiai : αi ∈ R≥0,
n∑

i=1

αi = 1

}
+

{
n∑

i=1

αibi : αi ∈ R≥0,
n∑

i=1

αi = 1

}
= conv(A) + conv(B)

So conv(A + B) ⊆ conv(A) + conv(B). Now suppose v + w ∈ conv(A) + conv(B) with v =∑n
i=1 αiai and w =

∑n
i=1 βibi. Consider:

v + bj =
n∑

i=1

αiai + bj

n∑
i=1

αi

=
n∑

i=1

αi(ai + bj)

So v + bj ∈ conv(A+B). Now consider:

v + w = v
n∑

j=1

βj + bj

n∑
j=1

βibj

=
n∑

j=1

βj(v + bj)

Hence v + w ∈ conv(conv(A+B)) = conv(A+B). Therefore conv(A) + conv(B) ⊆ conv(A+
B).

Lemma 5.7. Suppose P,Q ⊆ Rn and that for every hyperplane H ⊆ Rn, P,Q * H. Then for
every hyperplane H ⊆ Rn, P +Q * H.

Proof. Since for every hyperplane H ⊆ Rn, P,Q * H, we have that there are no β, γ ∈ R and
f,g ∈ Rn such that ∀p ∈ P,q ∈ Q,

p.f = β q.g = γ

Hence there are no β, γ ∈ R and f,g ∈ Rn such that ∀p ∈ P,q ∈ Q,

p.f + q.g = β + γ
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Therefore there is no α ∈ R and h ∈ Rn such that ∀p ∈ P,q ∈ Q,

p.h + q.h = α

Thus, there is no α ∈ R and h ∈ Rn such that ∀p ∈ P,q ∈ Q,

(p + q).h = α

Finally we have that there is no α ∈ R and h ∈ Rn such that ∀p + q ∈ P +Q,

(p + q).h = α

So there is no hyperplane H ⊆ Rn such that P +Q ⊆ H.

Theorem 5.8. Suppose P,Q ∈ Yn then P +Q ∈ Yn.

Proof. Consider:

P +Q = conv(P ) + conv(Q)

= conv(P +Q) by lemma 5.6

Also, since P,Q ∈ Yn, there is no hyperplane H ⊆ Rn containing them and hence by lemma
5.7, there is no hyperplane H ⊆ Rn containing P +Q. Therefore P +Q ∈ Yn.

Theorem 5.9. (Yn,+) is a commutative monoid.

Proof. Closure follows from theorem 5.8. Associativity and commutativity follow from the fact
that vector addition in Rn is associative and commutative. Finally, the identity polytope {0}
is the identity element since ∀P ∈ Yn, P + {0} = {p + 0 : p ∈ P} = P .

Note that by lemma 5.7 it is also zerosumfree. We would like to examine the effect of
Minkowski addition on the face collections of polytopes.

Definition 5.7. Suppose X ⊆ Rn and x ∈ X. x is an extreme point of X if conv(X \ {x}) 6=
conv(X).

Observe that if X ∈ Yn then the set of extreme points in X is
⋃

F∈F0(X) F . In other words,

the vertices of X. We can use this to write every P ∈ Yn as P = conv
(⋃

F∈F0(P ) F
)

.

12


